
Integrated Intelligent Research (IIR)                                                                            International Journal of Computing Algorithm 
Volume: 04 Issue: 01 June 2015 Pages:41-44 

 ISSN: 2278-2397 
 

41 

Test Suite Reduction Based on Fault Detection 
with Cost Optimization 

 
B.Nevedha1,  N.Rajkumar2 

1Dept. of Software Engineering, Sri Ramakrishna Engineering College, Coimbatore, India 
2Professor, Dept. of Software Engineering, Sri Ramakrishna Engineering College, Coimbatore,India 

Email: nevedha.b@gmail.com 
 

Abstract-Test Suite Reduction is an optimization technique to 
identify the minimally sized subset of test cases with enforced 
constraints involved. The main purpose of test suite reduction 
is to deduce increased number of test cases that in turn increase 
the time and cost involved in execution. Fault Detection is the 
method of identifying the faults that affect the outcome of the 
system either logically or syntactically. This paper focuses on 
the reduction of the test suite that has high fault identification 
rates and also incurs low cost of execution of test cases. The 
proposed approach includes a new parameter Fault Detection 
Effectiveness to identify fault rates of test suite; an algorithm 
for test suite reduction based on priority of requirements; a low 
cost framework to identify the execution of test cases with 
minimum budget. Thus, the proposed work defines a test suite 
that has high fault detection effectiveness providing maximum 
coverage to requirements at minimum cost of execution. 
 
Keywords-Fault Detection Effectiveness, Optimization, Coverage, 
Time of Execution, Cost Framework  
 

I. INTRODUCTION 
 

Software testing is the process of analyzing software to 
promote confidence that the actual behavior of the software 
correctly adheres to its specification of the requirements. 
Testing should systematically uncover different classes of 
errors in a minimum amount of time and with a minimum 
amount of effort. Secondary benefit of testing is that it 
demonstrates that the software appears to be working as stated 
in the specifications [2]. Testing helps is verifying and 
validating if the Software is working as it has to do the job. 
Methodologies to test the application may be either static or 
dynamic. It also provides a goal, unique perspective of the 
software to allow the organization to appreciate and understand 
the risks of software implementation. Test techniques include, 
both the process of executing a program or application with the 
intent of finding software bugs and also check if right 
application is created to satisfy the requirements [1].As 
software grows and evolves so does the accompanying test 
suites. More test cases will be required over time to test for 
new or changed functionality that has been introduced to the 
software, or to guard against a particular bug that has been 
previously discovered [7]. As time progresses, some test cases 
in a test suite will likely become redundant with respect to a 
particular coverage criterion, as the specific coverage 
requirements exercised by those redundant test cases are also 
exercised by other test cases in the suite. Notice that the 
property of a test case being redundant is relative to a specific 
set of coverage requirements.Software testing, depending on 
the testing method that is applied, and is dynamic throughout 
the development process. However, effort involved in testing is 

maximum after the requirements have been elicitated and the 
process of coding development has been completed.  
 

 

II. RELATED WORK 
 

As software grows and evolves, so too do the accompanying 
test suites. More test cases will be required over time to test for 
new or changed functionality that has been introduced to the 
software, or to guard against a particular bug that has been 
previously discovered. As time progresses, some test cases in a 
test suite will likely become redundant with respect to a 
particular coverage criterion, as the specific coverage 
requirements exercised by those redundant test cases are also 
exercised by other test cases in the suite [5]. Notice that the 
property of a test case being redundant is relative to a specific 
set of coverage requirements.For example, a test case 
exercising a certain set of statements A is redundant relative to 
the statement coverage of a test suite if the union B of all the 
statements exercised by the other test cases in the suite is such 
that A ⊆ B.However, that same test case may actually not be 
redundant relative to, for instance, definition-use pair coverage, 
if the test case exercises a unique definition-use pair that is not 
exercised by any other test case in the suite [1, 7]. It is 
important, therefore, to remember that redundancy of a test 
case is a property that is relative to some specific set of 
requirements.As test suites grow in size, they may become so 
large that it becomes desirable to reduce the sizes of the suites. 
This is especially true in situations where an extreme 
programming approach is followed which, among other 
guidelines, stresses the daily testing of software from the very 
first day of software development [3]. Test suite reduction is 
one general technique that has been proposed to address the 
problem of excessively large test suites. 

 
III. PROBLEM DEFINITION 

 
The aim of this paper is to reduce the size of the test suite by 
removing the unwanted and redundant test cases. The first Step 
is to generate the test cases and group them to corresponding 
test suites. The fault detection effectiveness of test suites is 
calculated and test suites with high value are taken for 
optimization. The test suites are then optimized based on their 
priority and coverage of requirements. A representative set of 
test cases are thus achieved. A parameter cost is incorporated 
to yield low cost test suite with high coverage. The 
characteristics of the test cases are then analyzed.  
 

IV. PROPOSED APPROACH 
 

The approach is defined in four major steps 



Integrated Intelligent Research (IIR)                                                                            International Journal of Computing Algorithm 
Volume: 04 Issue: 01 June 2015 Pages:41-44 

 ISSN: 2278-2397 
 

42 

1. Generation of Test Cases 
2. Grouping of test suites based on FDE 
3. Optimization of Test Suite 
4. Cost Calculation   
 
A. Generation of Test Cases 
The first step is to construct test data. All types of receivers, 
parameters, return values of target methods, constructors 
executed to produce the test case. A test case is defined as the 
sequence of call descriptions, the test case generation takes the 
possible data as a solution space to search, and apply 
approaches to find for a good solution. A flow graph for the 
program is generated and test cases covering the corresponding 
flow are documented. The test case of the corresponding 
program is inhibited and considered using the generate 
function of the build package.  
 
B. Grouping of Test Suites based on FDE 
The test cases are pooled together to form a test suite. The test 
cases are grouped together in the test suite based on the 
similarity existing among them taking into account their 
coverage criterion and their fault detection rate. The coverage 
criterion defines the coverage of test suite to the requirements. 
Thus the end result is the test suite with maximum fault 
detection effectiveness taken for optimization. 
The steps include the following 
1. Identify the test cases of the program. 
2. Order the test cases to the test suite based on their 

coverage criterion and the type of faults identified.  
3. Generate test suites containing relevant test cases of the 

program. 
4. Determine the Fault Detection Effectiveness of the test 

suite. 
FDE= (Number of faults identified by test suite) / (total 
number of faults in a program) 
 
C. Optimizing the Test Suite 
Test Suite Reduction technique returns the representative set 
that contains the optimized set of test cases. The process of 
execution in the reduction is organized as a sequence of 
activities which is described below in steps. 
The Algorithm steps include  
1. Initially, all requirements are unmarked. 
2. For each requirement that is exercised by only one test case 

each, add each of these test cases     to the representative set 
and mark the requirements covered by the selected test 
cases. 

3. Consider the unmarked requirements in the increasing order 
of cardinality of the set of test cases exercising the 
requirements and add them to representative set. 

4. If there is a tie among multiple test cases then choose the 
test case with high coverage of requirements. 

5. If the tie is not broken even after the application of the 
constraint then randomly pick the test case.                                            

6. The Representative Set is the optimized test suite with the     
test cases that yield maximum coverage. 
 

The algorithm contains a helper function used  to select the 
next test case to include in the reduced suite. The input to the 
algorithm is a mapping of each requirement covered by an 
original test suite to the set of test cases in the suite covering 

that particular requirement. The goal is to find a representative 
set of test cases, of smallest possible size, covering the same 
set of requirements as the original suite. The approach follows 
a heuristic to greedily select the test cases that cover the 
requirements that are the hardest to satisfy, until all 
requirements are covered.  
 
D. Cost Calculation 
The Algorithm gives the representative set with optimized set 
of test cases. The optimized set may sometimes incur a high 
cost of execution. Hence, the parameter cost is incorporated to 
obtain a low budget test suite with maximum coverage. Thus, it 
is possible to obtain a representative set of test cases which 
takes low cost for execution for testing and also that satisfy 
maximum number of requirements. Also the prioritization of 
the requirements is done so as to consider that the 
representative set covers the maximum prioritized 
requirements that are defined.The steps for cost calculation 
include 
 Order the requirements based on the priority of the 

execution. Higher priority requirements are placed on the 
top and are necessary to be executed descending down to 
the next less priorities. 

 Calculate the cost of the representative set. 
 Cost = Coverage / Cardinality 
 If there occurs a tie where two test suites have same 

minimum cost thenchoose the test suite that covers the high 
priority requirements.   

 
V. FLOW GRAPH 

 

 
 

Fig 1:  Generation of Test Suites for optimization 
 

The flow explains the step by step process of execution of the 
entire process. The first flow chart describes the fault detection 
technique and formation of test suites. The second flow chart 
shows the optimization of tsuites based on the cardinality 
coverage of requirements. 



Integrated Intelligent Research (IIR)                                                                            International Journal of Computing Algorithm 
Volume: 04 Issue: 01 June 2015 Pages:41-44 

 ISSN: 2278-2397 
 

43 

 

 
 

 
Fig 2: Representative Set of optimized Test Suites 

 

 
 

Fig 3: Choosing the Low Cost Test Suite 
 

The flow explains the step by step process of execution of the 
entire process. The first flow chart describes the fault detection 
technique and formation of test suites. The second flow chart 
shows the optimization of the test suites based on the 
cardinality and coverage of requirements. The third flow chart 
illustrates the prioritization of the requirements and also the 

cost calculation. The end result is the low cost test suite with 
high coverage. 
 

VI. EXPRIMENTAL RESULTS 
 

Table 1: Input-Output table for each stage 
 

STAGES INPUT OUTPUT 

Generation 
of Test 
Cases 

Any 
program that 
needs to be 
tested 

Generation of Flow Graph and 
Derivation of test cases 

Grouping of 
test suites 
based on 
FDE 

Set of test 
cases 
derived 

Grouping of test cases to test 
suites and forming test pool 
with high FDE test suites 

Identifying 
the 
Optimized 
test suites 

Set of test 
Suites 

Representative set of 
optimized test case 

Cost 
Calculation 

Optimized 
test suites 

Low cost test suite covering 
maximum requirements 

 
VII. PERFORMANCE ANALYSIS 

 
The results of proposed algorithm thus obtained by adapting 
FDE and cost framework with prioritization of requirements 
for test suite reduction shows a considerable decrease in the 
cost and time of execution when compared to the random 
reduction of the test cases from the test suite. The method is 
simple to implementand also shows a greater efficiency in the 
process of test suite reduction. It also focuses on the primary 
parameters such as budget and time which are beneficial for 
the users to evaluate the system at minimum cost at a small 
deadline. A   requirement A is deemed harder to satisfy than a 
requirement B if A is covered by fewer test cases (has a 
smaller associated test case set size) than B. 
 

VIII. CONCLUSION 
 

This paper provides a novel approach to the Test Suite 
Reduction methodology. This approach uses a parameter Fault 
Detection Effectiveness to choose the test suites with high fault 
identification rates. Test Suites thus chosen are reduced based 
on their coverage of requirements and also their effectiveness 
to cover the prioritized requirements. Cost framework 
developed helps to identify test suites executing at minimum 
budget. Results show that by using this approach the cost and 
time involved in execution of the test cases is greatly reduced 
and also the test suites highly efficient in detecting the faults 
existing in the system. 
 

IX. FUTURE WORK 
 

In future, many other metrics like fault tolerance, accuracy, 
risk management and time of execution parameters can be 
included to the algorithm making it more effective. The work 
can also be extended by creating a fault log table, categorizing 
the faults that occur with the program and taking the necessary 



Integrated Intelligent Research (IIR)                                                                            International Journal of Computing Algorithm 
Volume: 04 Issue: 01 June 2015 Pages:41-44 

 ISSN: 2278-2397 
 

44 

actions that help in increasing the precision of the system 
taken.  
 

REFERENCES 
[1 ]  C.T.Lin, K.W.Tang, G.M.Kapfhammer, “Test suite reduction methods  

decrease regression testing costs by identifying irreplaceable tests”, 
Information and Software Technology, May 2014. 

[2]  H.Zhong, L.Zhang,H.Mei, “An experimental study of four typical test 
suite reduction techniques”, Information Software Technology. Vol 50, 
2008, pp. 534–546. 

[3]  J.Harrold, R.Gupta, M.L.Soffa, “A methodology for controlling the size 
of a test suite”, ACM Transaction, Software Engineering Methodology, 
Vol 3, 1993, pp. 270–285. 

[4]  D.Jeffrey, N.Gupta, “Improving fault detection capability by selectively 
retaining test cases during test suite reduction”, IEEE Transaction, 
Software Engineering, Vol 33, 2007, pp.108–123. 

[5] J.W.Lin, C.Y.Huang.“Analysis of test suite reduction with enhanced 
tiebreaking techniques”, Information Software Technology, Vol 51, 
2009, pp.679–690. 

[6] T.Y.Chen, M.F.Lau, “A new heuristic for test suite reduction”, 
Information Software Technology, Vol 40, 2008, pp. 347–354. 

[7]  T.Y.Chen, M.F.Lau, “A simulation study on some heuristics for test suite 
reduction”, Information Software Technology, Vol 40, 2009, pp. 777–
787. 

[8]  DeMillo, A.P.Mathur, “On the Use of Software Artifacts to Evaluate the 
Effectiveness of Mutation Analysis” Technical Report SERC-TR-92-P, 
Purdue University, West Lafayette, 2000.  

[9]  Do.H.Elbaum., G.Rothermel, “Supporting controlled experimentation 
with testing techniques: an infrastructure and its potential impact”, 
Empirical Software Engineering, Vol10, 2005, pp.405–435.  

[10]  P.G.Frankl, R.G.Hamlet, B.Littlewood, L.Strigini, “Evaluating testing 
methods by delivered reliability”, IEEE Transactions Software 
Engineering, Vol24, pp.586–601, 1998. 

[11]  J.A.Jones, M.A.Harrold,”Test-suite reduction and prioritization 
formodified condition/decision coverage”, IEEE Transaction, Software 
Engineering, Vol. 29,2003, pp.195–209.  

[12]  D.Binkley, “Semantics guided regression test cost reduction” IEEE 
Transaction Software Engineering Vol 23, 1997, pp. 498–516. 

 
 


